
Abstract

The Aircraft Landing Problem is a classical combinatorial optimization problem
in which a set of arriving aircraft must be sequenced and scheduled to land on
airport’s runways, with the objective of minimizing total deviations from the es-
timated time of arrival. This work proposes two simple and efficient heuristics to
solve the Aircraft Landing Problem on single runway. The proposed heuristics are
based on rolling horizon, and iterated greedy frameworks. The motivation behind
our work is to develop simple heuristics that are capable of delivering high quality
solutions in a short amount of time. This is important because due to the dynamic
nature of the problem, i.e. flights arriving early, or late or even being canceled, op-
erators will need to re-solve the problem on a regular basis and update the landing
schedules. Therefore, fast algorithms are paramount. The computational experi-
ments over a set of standard instances demonstrate that we fulfilled this aim, and
that the proposed heuristics can obtain satisfactory and promising solutions in a
short amount of time.
Keywords: Destruction and construction, Sequence relaxation, Iterated greedy,
Rolling horizon
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1 Introduction

The Aircraft Landing Problem (ALP) is an important class of scheduling problems, and
models problems involving ready times, due dates, sequence-dependent setup times,
and penalties for completing jobs either earlier or later than the due dates. It is well-
known that problems with these characteristics are strongly NP-Hard (Pinedo, 2008).
Due to practical considerations, the objective of the ALP is to minimize total devia-
tions from the target (preferred) landing times by penalizing early and late landings.
The amount of deviation from the target landing time between the earliest and latest
landing times is the basis for determining the penalty. Hence, the penalty function in-
cludes two components: penalizing early landings and penalizing late landings. Not
surprisingly, an optimal solution of the ALP has applications in the areas of transporta-
tion and scheduling, providing significant benefits to systems experiencing long delays.

Given a set of aircraft I = {1, . . . , n}, and runways, the aim of the ALP is to
obtain a sequence for aircraft landings and the associated schedule for those landings
such that penalties associated with early and late landings are minimized. The early
landing of aircraft i is given by αi = max(0, Ti−xi) when aircraft i lands earlier than
time Ti, that is, if xi ≤ Ti, where xi is the scheduled (planned) landing time of aircraft
i, and Ti is the target landing time of aircraft i. The late landing of aircraft i is given by
βi = max(0, xi − Ti) when aircraft i lands later than time Ti, that is, if xi ≥ Ti. Also,
aircraft i is required to land in the time window [Ei, Li], i.e. Ei ≤ xi ≤ Li, where
Ei is the earliest landing time of aircraft i, and Li is the latest landing time of aircraft
i. Note that αi holds if the decision variable xi lies within the range [Ei, Ti], while βi
holds if it lies within the range [Ti, Li].

In addition, there is a safety separation time, which is also known as wake vortex,
sij ∈ R+ between every two aircraft i, j ∈ I2, i 6= j, if they land one after another.

Exact solution methods can only be applied to solve small instances of the ALP
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(Beasley et al., 2000; Ernst et al., 1999; Ghoniem and Farhadi, 2015). Therefore,
heuristics and meta-heuristics are practical options for large instances. For example,
Pinol and Beasley (2006) applied Scatter Search (SS) and Bionomic Algorithms (BA)
to instances with up to 500 aircraft. Salehipour et al. (2013) combined Simulated An-
nealing (SA) and Variable Neighborhood Search (VNS) algorithms into one hybrid
algorithm, and applied this to the same instances. Girish (2016) developed several
meta-heuristics for the ALP, and reported promising results. Recently, Salehipour and
Ahmadian (2017) developed a Variable Neighborhood Descent (VND) algorithm with
new relaxation neighborhoods. They reported very promising solutions for the same
instances on single runway. Those studies found optimal solution for small instances
with up to 50 aircraft, and high quality solutions for larger instances. Special cases of
the problem have also been studied; for an example see Salehipour et al. (2009).

This work aims to develop simple heuristics, by combining local search methods
and exact solver generated solutions, that are capable of delivering high quality outputs
in a short time. Our work is motivated by the dynamic nature of the ALP, as flights
may arrive early, be delayed or even end up being canceled. Hence, operators will be
required to re-solve the problem on a regular basis and update the landing schedules.
Therefore, fast algorithms are crucial. Available heuristic solution methods discussed
above require long computation times. Moreover, they include the combination of dif-
ferent neighborhood structures as well as heuristics and meta-heuristics, and hence,
their implementation requires advanced algorithmic techniques. We believe that the
most important advantage of the algorithms proposed in this study is their conceptual
simplicity. This is important because it allows the proposed algorithms to be easily
tuned, implemented, and extended to other problems. In addition, available optimiza-
tion solvers such as CPLEX and Gurobi have greatly improved in recent years, making
solver based heuristic algorithms significantly faster and more effective.

This study contributes into solving the ALP by developing simple and efficient
algorithms that are capable of delivering high quality solutions in a short time. Sec-
tion 2 explains those solution methods for the ALP, followed by their computational
outcomes in Section 3. Section 4 concludes the paper.

2 Proposed solution methods

This study proposes two heuristic solution methods to solve the Aircraft Landing Prob-
lem (ALP). Both methods are based on the Iterative Greedy (IG) framework. The major
difference between two methods is the inclusion of the Rolling Horizon (RH) frame-
work in the first method. We name the first method IG-1, and the second IG-2. Both
methods are easy to tune and implement, and deliver satisfactory and promising results.

The IG includes two components of destruction and construction, and works by
partially destructing, and re-constructing the solution. A similar framework has been
applied by Ruiz and Stützle (2007) for the permutation flowshop problem. The IG
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proposed in this study destructs a small subset of the sequence (a set of aircraft), in
which those aircraft are allowed to be re-ordered within the subset, and re-constructs
the sequence by solving the problem, in which the landing order of all aircraft except
those in the destructed subset are fixed. Therefore, the landing order for the destructed
aircraft may change within the subset. Hence, an improved landing sequence may be
constructed. This process is iterated until the stopping criterion is met.

The RH has already been applied to solve the dynamic ALP (Bennell et al., 2017).
The RH framework decomposes the problem into a set of smaller overlapping sub-
problems, and solves a single sub-problem at every iteration. This greatly reduces
the computational burden, while ensuring that the obtained solutions are very close
to optimal. Two parameters of RH are window (w), which defines the size of the sub-
problems, and roll (r), which defines the overlapping size for sub-problems. Obviously,
r ≤ w < n, and the case r = w results in non-overlapping sub-problems. In the
proposed RH for the ALP, both w and r are in terms of number of aircraft rather than
time intervals. Because we keep the size of the sub-problems relatively small, we are
able to optimally solve each sub-problem by utilizing available exact solvers such as
CPLEX (ILOG, 2012), and Gurobi (Gurobi Optimization, 2016). More precisely, the
following model (Beasley et al., 2000; Pinol and Beasley, 2006; Salehipour et al., 2013)
is solved for each sub-problem.

min z =

n∑
i=1

(αic
−
i + βic

+
i ) (1)

Subject to

Ei ≤ xi ≤ Li i = 1, . . . , n (2)

xi − Ti = αi − βi i = 1, . . . , n (3)

yij + yji = 1 i, j = 1, . . . , n, i 6= j (4)

xj − xi ≥ sijyij −Myji i, j = 1, . . . , n, i 6= j (5)

yij ∈ {0, 1} i, j = 1, . . . , n, i 6= j (6)

xi, αi, βi ≥ 0 i = 1, . . . , n (7)

The objective function (Equation (1)) minimizes the total cost of early and late
landings, where c−i and c+i are the per unit penalties for earliness and tardiness of
aircraft i. Equation (2) ensures every aircraft lands in its time window. Equation (3)
links the decision variables xi and parameters Ti to decision variables αi and βi. Given
a pair of aircraft, Equation (4) ensures one lands before the other. Equation (5) imposes
the separation time condition. Equations (6) and (7) ensure decision variables yij only
take binary values, and decision variables xi, αi and βi only take non-negative values.

Both RH and IG require an initial sequence to begin with. Recently, the study of
Salehipour and Ahmadian (2017) used the Earliest Target Landing Time (ETLT) dis-
patching rule introduced by Salehipour et al. (2013) to generate an initial sequence for
the ALP. The ETLT obtains an initial sequence by sorting aircraft on a non-decreasing
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order of their target landing times. In this study, we used a modification of the NEH
construction algorithm of Nawaz et al. (1983) to generate an initial sequence for the
ALP. We realized that the NEH produces superior solutions than those produced by
the ETLT. Algorithm 1 summarizes the NEH algorithm for the ALP. Algorithm 2 and
Algorithm 3 summarize the heuristics IG-1 and IG-2.

Algorithm 1: An NEH-inspired construction algorithm for the Aircraft Landing
Problem.

Input: An instance of the ALP.
Step 1: Let π′ = (σ(1), σ(2), . . . , σ(n)), where Tσ(1) ≤ Tσ(2) ≤ · · · ≤ Tσ(n) be a
sequence for aircraft landings (sorted in non-decreasing order of target landing times);
Step 2: Take the first two aircraft from π′ and sequence them such that the partial landing
cost is minimized. Maintain the relative position of those two aircraft in the remaining
steps;
Step 3: Consider the next aircraft, and find the minimum landing cost for inserting the
aircraft in the three last possible positions in the partial sequence. Maintain the relative
position of those sequenced aircraft in the remaining steps;
Step 4: Repeat step 3 until a complete sequence is constructed.
return the constructed sequence;

Algorithm 2: An Iterative Greedy algorithm (IG-1), with the Rolling Horizon
(RH) framework for the Aircraft Landing Problem (ALP).

Input: An initial sequence; parameters w, r.
while stopping condition is not met do

J ′ ←relax(w, r) (extracting a set of sub-sequences to be destructed);
optimize(J ′) (constructing the sub-sequence through solving by an exact solver);
J∗ ←update() (updating the landing sequence and schedule);

end
J∗ ← post process(J∗) (further optimizing the sequence);
Report J∗;

The solution method IG-1 destructs (relaxes) a set of overlapping sub-sequences
J ′ ⊂ J , and re-constructs (optimizes) J ′. To improve the efficiency of IG-1, the sub-
sequences are prioritized on their contribution into the objective function value. This
ensures the sub-sequence with the highest contribution will be relaxed and optimized
early during the algorithm. The post-process ignores this cost contribution scheme.

The solution method IG-2 destructs a sub-sequence through Relax-1 and Relax-
2 neighborhoods, and re-constructs a solution. The difference between Relax-1 and
Relax-2 lies in the way they carry out the optimization; while Relax-1 imposes re-
constructing only the destructed sub-sequence, Relax-2 imposes re-constructing the
whole sequence. Relax-1 and Relax-2 are performed several times until the stopping
criterion is met.

Note that both IG-1 and IG-2 ensure that the landing order of all aircraft except
those in the destructed subset are fixed. Therefore, the connection with the already
positioned aircraft is automatically maintained.
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Algorithm 3: An Iterative Greedy algorithm (IG-2), with two neighborhood
structures of Relax-1 and Relax-2, for the Aircraft Landing Problem (ALP).

Input: An initial sequence; parameters r1 and r2.
while stopping condition is not met do

if i1 > 0 then
J ′ ← Relax-1() (destructing a sub-sequence);
i1 := i1 − 1;

end
if i2 > 0 then

J ′ ← Relax-2() (destructing a sub-sequence);
i2 := i2 − 1;

end
Optimize(J ′) (constructing the sub-sequence through solving by an exact solver);

J∗ ←update() (updating the landing sequence and schedule);
if i1 = 0 then

i2 := r2;
end
if i2 = 0 then

i1 := r1;
end

end
Report J∗;

3 Computational results

We tested IG-1 and IG-2 heuristic algorithms on 13 benchmark instances of the Aircraft
Landing Problem (ALP) available at OR Library. The instances range from small prob-
lems (10 aircraft) to large ones (500 aircraft). In this study, we set w = 10, and r = 8.
Therefore, each sub-problem includes w = 10 aircraft, and each rollover includes only
2 aircraft of the last sub-problem. For IG-2, we set r1 = 5, and r2 = 20, i.e. Relax-1
and Relax-2 neighborhoods will be applied 5 and 20 times. Moreover, we initialize
i1 = 10 + n

25 , and i2 = 0, where n is the number of aircraft. In addition to this, we
set w = n

U(15,20) for Relax-1, and w = n
U(20,30) for Relax-2, where U(a, b) represents

discrete uniform distribution with parameters a and b. The computation time limit of
both algorithms was set to 400 seconds, though, only Airland13, which includes 500
aircraft, benefits from longer computation time (see Table 3).

The reason for these parameter values, which were chosen after extensive testing,
is because they result in very good quality solutions in a short time, which is in line
with the aims of the study. We should add that greater values of w lead to larger sub-
problems but fewer of them, which are more difficult to optimally solve in a short time.
Also, smaller values of r leads to a larger number of sub-problems, and we observed
that not only this does not contribute to the solution’s quality, it greatly increases the
computation time. Moreover, due to earliness and tardiness penalties we make the ob-
servation that it is not beneficial to sequence aircraft too far from their initial positions,
neither earlier nor later, implying larger values for r may not be beneficial here.

In all instances, we consider a single runway. Generally speaking, the ALP with
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single runway is more difficult to solve than with multiple runways. This is further
evidenced by the previous studies (Pinol and Beasley, 2006; Salehipour et al., 2013;
Girish, 2016). Finally, optimization solvers CPLEX version 12.4.0 (ILOG, 2012), and
Gurobi version 7.5 (Gurobi Optimization, 2016) were used to perform re-construction.

The outcomes of IG-1 and IG-2 heuristics have been depicted in Figures 1 and 2.
For comparison purposes, we also reported the outcomes of SA+VND (Simulated An-
nealing and Variable Neighborhood Descent) and SA+VNS (Simulated Annealing and
Variable Neighborhood Search) algorithms of Salehipour et al. (2013), SS (Scatter
Search) algorithm of Pinol and Beasley (2006), CG (Column Generation) algorithm
of Ghoniem and Farhadi (2015), and HPSO-LS (Hybrid Particle Swarm Optimization
and Local search) algorithm of Girish (2016), as appeared in those studies. Figure 1 il-
lustrates the best, average, and worst performance of these solution methods (evaluated
by minimum, average, and maximum values of gap) and the number of best solutions
obtained by the methods. The gap is computed as z∗−zcplex

zcplex
× 100, where z∗ is the

best objective function value reported by the method, and zcplex is the best objective
function value obtained by the solver CPLEX, and as reported in Table 1. According
to Figure 1, CG, HSPO-LS, IG-1 and IG-2 resulted in lower values of gap compared
to SA+VND, SA+VNS, and SS. Also, while SA+VND, SA+VNS, SS, and CG cannot
obtain more than 9 best solutions (out of 13), the HSPO-LS obtains 13, followed by
IG-2, and IG-1, which obtain 12, and 11. The greater number of best solutions obtained
by the HSPO-LS has paid its price by significant computation time. This is further il-
lustrated by Figure 2, which shows the performance of the solution methods in terms
of the best, average, and worst computation times, and the number of best solutions
obtained. According to Figure 2, the HSPO-LS has the highest computation time.
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Figure 1: Minimum, average, and maximum values of gap (in percent), and the number
of best solutions obtained by different solution methods.

To demonstrate the computational difficulty of solving the ALP, Table 1 reports the
details of the solver CPLEX over solving the model discussed in Section 2 on a High
Performance Machine.

Table 2 summarizes the outcomes of all solutions methods discussed in this study
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Figure 2: Minimum, average, and maximum values of computation times (in second),
and the number of best solutions obtained by different solution methods.

Table 1: Outcomes of the solver CPLEX. The results were obtained by running the
CPLEX on a High Performance Machine with 10 threads of Intel R©Xeon CPU E5-
1650 at 3.50GHz, and 32GB of memory, and allowing the CPLEX to run until it is
stopped due to lack of memory.

Instance n Best available CPLEX
z∗ Time(s) Nodes left Gap(%)

Airland1 10 700.00 700.00 0.66 0 0.00
Airland2 15 1480.00 1480.00 0.49 0 0.00
Airland3 20 820.00 820.00 0.39 0 0.00
Airland4 20 2520.00 2520.00 5.12 0 0.00
Airland5 20 3100.00 3100.00 20.44 0 0.00
Airland6 30 24442.00 24442.00 0.10 0 0.00
Airland7 44 1550.00 1550.00 0.86 0 0.00
Airland8 50 1950.00 1950.00 0.98 0 0.00
Airland9 100 5611.70 5611.70 35439.15 114,888,161 15.08
Airland10 150 12292.20 12292.20 58182.04 98,406,232 50.77
Airland11 200 12418.32 12418.32 30713.95 77,355,422 36.80
Airland12 250 16122.18 16152.73 33798.37 61,092,575 44.07
Airland13 500 37067.11 37268.12 51666.16 38,294,894 53.22

in terms of their capability to obtain the best known solutions. It is clear that the IG-2
heuristic yields high quality solutions in short computational times. Also, as observed
by Figure 2 both IG-1 and IG-2 algorithms have an average computation time of less
than 1.5 minutes, and are able to obtain 11 and 12 best known solutions (out of 13)
for the ALP, respectively. Notice that all solution methods are able to obtain optimal
solution for instances with up to 50 aircraft. For the larger instances, while the HSPO-
LS of Girish (2016) obtains best solutions for all instances, on average it takes almost
seven times longer than the IG-1 and IG-2 algorithms. This is a further testament
to the efficiency of the algorithms of this study, particularly IG-2, in delivering high
quality solutions for the ALP. Indeed, due to the practical changes in flights schedule,
delivering satisfactory schedules in a short time is very important.
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Table 2: The solution methods’ capability in obtaining the best known solutions.
Instance n Best available Solution Method
Airland1 10 700.00 All
Airland2 15 1480.00 All
Airland3 20 820.00 All
Airland4 20 2520.00 All
Airland5 20 3100.00 All
Airland6 30 24442.00 All
Airland7 44 1550.00 All
Airland8 50 1950.00 All
Airland9 100 5611.70 CPLEX, HPSO-LS, IG-1, IG-2
Airland10 150 12292.20 CPLEX, HPSO-LS, IG-1, IG-2
Airland11 200 12418.32 All
Airland12 250 16122.18 HPSO-LS, IG-2
Airland13 500 37067.11 HPSO-LS

4 Conclusion

Following the difficulty of the Aircraft Landing Problem (ALP), we proposed two effi-
cient heuristics to solve the problem. The major idea behind the algorithms is iterative
deconstruction and re-construction of a sub-sequence (of aircraft landings). Our major
goal in this study has been developing fast and efficient heuristics for the ALP. We
showed that while the proposed algorithms are quick enough to be implemented in
practice, they are capable of obtaining high quality solutions. Through solving a set of
13 benchmark instances and comparing across major algorithms, we showed that our
algorithms obtain optimal solutions for all eight instances with up to 50 aircraft, and
that in a few seconds, and for four larger instances, and that in less than 1.5 minutes on
average.
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