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Abstract. We explore the problem of discovering interesting solutions
(“solutions of interest” or SoIs) in the context of the cross-dock door
assignment problem (CDAP), a challenging integer programming prob-
lem that is quadratic in the objective. These solutions of interest may
be optimal or not, but potentially valuable for sensitivity analysis and
other post-solution tasks. We compare the CHH (convex hull heuristic),
a mathematical programming metaheuristic, with the FI-2Pop GA+SOI,
an evolutionary computation metaheuristic.

Keywords: cross-dock door assignment problem, CDAP, convex hull
heuristic, CHH, feasible-infeasible two-population genetic algorithm, so-
lutions of interest, multiple solutions

1 Introduction

Research in conventional optimization is largely focused on the problem of find-
ing better solution methods, whether exact or heuristic, for optimization models,
and on assessing and comparing the performance of the solution methods that
are available. We explore a different problem in this paper. We informally de-
fine a solution of interest (SoI) as a possibly non-optimal and possibly infeasible
solution that is nevertheless likely to be relevant to decision making informed
by the model. Concretely, we identify SoIs as either feasible with comparatively
good objective values (comparing to the optimum or best available) and com-
paratively high levels of slack in the constraints, or as infeasible with superior
objective values and modest levels of constraint violation. (See [9] for a more ex-
tended discussion of SoIs.) We explore the cross-dock door assignment problem
(CDAP) with the aim of finding SoIs. In doing so, we contrast and compare two
metaheuristic approaches, one based on a variety of evolutionary computation,
the other based on mathematical programming. We begin, in the next section,
by describing the CDAP.

2 The Cross-Dock Door Assignment Problem (CDAP)

In the CDAP we assume a cross-docking facility with I incoming (strip) doors
and J outgoing (stack) doors, with M origins (sources) and N destinations
(sinks). Trucks with goods from various sources and for various destinations
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arrive at the cross-dock and are assigned a strip door, at which the trucks are
unloaded (stripped) and their goods sorted and moved to trucks docked at the
stack doors. The problem is to position the incoming trucks and the outgoing
trucks so that the total distance the goods (and the people who push the loaded
carts) have to travel across the cross-dock is minimized. Each box has a specified
destination and must be loaded in an outbound truck going to that destination.

We illustrate with an example, the SetA 8x4S30 benchmark CDAP from [5].
To begin there is the matrix/array W :

W =

0 0 26 0 0 0 0 0
22 0 0 0 0 0 0 0
41 32 0 50 30 0 0 0
0 0 0 0 10 31 0 0
40 0 0 44 0 0 50 0
0 47 0 31 0 0 0 0
0 0 0 0 43 0 0 0
0 44 31 0 0 0 0 31

(1)

The interpretation is that wmn is the amount of goods (think: cubic feet) in the
incoming truck that must be transported from source m to destination n. Thus,
in this example, incoming truck #6 is loaded with 78 units of goods from source
6, of which 47 units need to be shipped (loaded on a truck for) destination 2 and
31 need to be shipped to destination 4. W is 8×8, so there are 8 distinct sources
and 8 distinct destinations.

We also have the matrix/array D:

D =

8 9 10 11
9 8 9 10
10 9 8 9
11 10 9 8

(2)

D specifies the distance between the cross-dock stripping and stacking doors. In
this problem we have 4 of each. dij is the distance between strip door i and stack
door j. In the present case, d4,1 = 11, d2,3 = 9 and so on.

S specifies the capacities on the stripping doors. In this problem we have the
matrix/array S:

S = 196 196 196 196 (3)

The interpretation is that each of the four strip doors has a capacity of 196 units
(think: cubic feet of goods) in the planned time window. Similarly, we have

R = 196 196 196 196 (4)

with the interpretation that each of the stack doors has a capacity of 196 units.
We are now in position to formulate the CDAP as a mathematical program:

Minimize z =

I∑
i=1

J∑
j=1

M∑
m=1

N∑
n=1

dijwmnxmiynj (5)
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Subject to:
M∑

m=1

smxmi ≤ Si i = 1, 2, . . . , I (6)

I∑
i=1

xmi = 1 m = 1, 2, . . . ,M (7)

N∑
n=1

rnynj ≤ Rj j = 1, 2, . . . , J (8)

J∑
j=1

ynj = 1 n = 1, 2, . . . , N (9)

xmi = 0 or 1 m = 1, 2, . . . ,M, i = 1, 2, . . . , I (10)

ynj = 0 or 1 n = 1, 2, . . . , N, j = 1, 2, . . . , J (11)

The xmis and ynjs are binary decision variables. xmi has the interpretation 1
if goods of source type m (goods originating at source m) are stripped at strip
door i; 0 otherwise. Similarly ynj is 1 if goods of type n are stacked at door
j. Si is the capacity of strip door i. Rj is the capacity of stack door j. These
capacities are in cubic feet per shift and so are soft in practice. This is a main
reason we seek solutions of interest, as characterized. sm =

∑N
n=1 wmn and is

the total number of units from source m. Similarly, rn =
∑M

m=1 wmn and is the
total number of units shipped to destination n.

CDAP is quadratic in the objective, with the xmi and ynj decision variables
being multiplied together because the value of assigning a truck to a strip door
depends in part on which trucks (with which destinations) are assigned to specific
stack doors. The number of binary decision variables under the mathematical
programming formulation, above, is M ∗I + N ∗J . This equals 8×4+8×4 = 64
in the example to hand, the SetA 8x4S30 benchmark CDAP. Experience to date
generally finds that exact solvers (branch-and-bound) are unable to solve CDAP
problems with 210 binary variables or more, e.g., for problems with 15 sources,
15 destinations, 7 strip doors and 7 stack doors, or larger.

In the next two sections we describe our two solution approaches for solving
the models and collecting the SoIs.

3 The FI2PopGA+SoI Algorithm

We used what we call the FI2PopGA+SoI algorithm to solve the CDAP test
cases we considered and to collect the SoIs. Our algorithm is a close variant
to the “feasible-infeasible two-population GA,” described in [11] and [9] (and
partially in [10]), augmented by collecting SoIs encountered. Briefly, the FI2Pop
GA, consists of two genetic algorithms (GAs, which can be of essentially any
kind; crossover and mutation methods are not material to the concept) arranged
so one works on a feasible and the other an infeasible population of solutions.
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The SoI collection part of the algorithm is intertwined with the FI2PopGA
part and works as follows. At initialization two data structures, a dictionary
and a priority queue, are set up for each class of SoI to be collected. (We used
four in this study; two kinds of feasible and two kinds of infeasible solutions [9].)
During evaluation of daughter solutions (from either the feasible or the infeasible
population), after each solution is evaluated and its feasibility determined, its
presence in the relevant dictionaries is checked. If the solution is present, nothing
else is done. If it is not present, then the priority queue associated with the
dictionary is checked. If its length is less than the maximum allowed, then the
solution is added to both the priority queue and the dictionary. If the length of
the priority queue equals the maximum allowed, then the worst element of the
queue is popped and its objective value compared to the solution to hand. If the
solution to hand is not superior to the popped solution, nothing else is done with
that solution and the popped solution is returned to the priority queue. If the
solution to hand is superior to the popped solution, then the popped solution is
removed from the dictionary, and the solution to hand is pushed to the priority
queue and added to the dictionary.

From this description it should be apparent that the added computational
cost of collecting the SoIs is quite tractable. Note also that collecting infeasible
solutions depends critically on having available a population of them, raising the
question of the suitability of solver algorithms without this property.

Regarding prior research we note that [3] treats CDAP with evolutionary
computation. Also, Ann Kuo in her thesis [12] successfully treated related diffi-
cult test problems with the FI2PopGA. We are not aware of any related efforts
to collect SoIs for CDAP with evolutionary computation (or indeed other meta-
heuristics).

4 The Convex Hull Heuristic (CHH)

The convex hull heuristic (CHH) is a multi-start metaheuristic, designed for pure
integer nonlinear differentiable optimization problems with linear constraints.
It can be applied to any such nonlinear problem as long as linear problems
subject to the same constraints are by comparison much easier to solve. A single
start of the algorithm, loosely based on simplicial decomposition [8], alternates
between a continuous nonlinear problem (NLP) with one linear constraint, whose
number of variables increases by one at each iteration, and one linear integer
programming subproblem (IPS) subject to all original constraints. CHH can
make use of software features such as CPLEX’s solution pool to enlarge—and
enhance the quality of—the sample of integer feasible solutions found.

CHH is based on a relaxation method called convex hull relaxation (CHR),
independently introduced in [4] and [2] as an extension of the primal relaxation of
[6]. For nonlinear integer minimization problems, CHR computes both a lower
bound on the optimal value and good integer feasible solutions. This can be
defined for both convex and nonconvex problems, however it only produces a
valid bound for convex problems, and it is only efficient as a heuristic in the
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nonconvex case. In the latter case, the algorithm generates, as a by-product,
what are almost always high quality integer feasible solutions.

We allow two changes over a standard implementation of simplicial decom-
position. First it is not essential in the nonconvex case to solve every single
intermediate subproblem to optimality. It does happen in practice that out of
maybe fifty or sixty calls to the linear MIP solver, one or two problems happen
to require substantially more time. To avoid this erratic behavior, we impose an
upper bound on the runtime of every (IPS), ten or 20% larger than the aver-
age (IPS) runtime (one cannot do this in the convex case as this might affect
the overall convergence of the algorithm). It might however affect the final best
value, positively or negatively, but keeps the time manageable. The second de-
viation is based on the solution pool feature of CPLEX. While solving (IPS),
CPLEX searches for a best feasible value for the linearized objective function.
Successive incumbents can also be tested on the fly in terms of another criterion,
in our case their value for the original nonlinear objective function, and the best
solution and its value are recorded. In many of our experiments, the best value
obtained was actually coming from the solution pool of CPLEX. For a more
detailed description of the CH heuristic, see [1, 7].

5 Experiments and Results

In an extended series of studies drawn upon for this paper, we have been working
with CDAP test problems generated by Cardoso da Silva [5] for his thesis. In the
thesis they were solved by two related local search heuristics. These problems are
well accepted in the CDAP research community and are thought to be reasonable
approximations of the real world CDAP instances that are known.

Optimal solutions are available, via branch-and-bound solvers, for about 15
of the smaller CDAP test problems. Larger problems defeat branch-and-bound
today and so must be approached with heuristics. Given our interest here is on
finding solutions of interest, we focus on problems for which optimal solutions
are known.

Because of space limitations in this extended abstract, we must severely
limit our discussion of results. In particular we report on results for just one
(representative) problem, SetA 10x5S5 from Cardoso da Silva [5]. That problem
has 5 strip (incoming) doors, 5 stack (outgoing) doors, 10 sources of goods, and
10 destinations.

Tables 1 and 2 show the top feasible and infeasible SoIs discovered by the
FI2PopGA+SoI alogrithm. We also solved the SetA 10x5S5 problem using the
CHH algorithm, retaining solutions from the CPLEX pool, as described above.
The top feasible solutions are reported in Table 3. The top infeasible SoIs are
shown in Table 4. Points arising:

1. The CHH executes much faster (13 seconds on a good server) than the
FI2PopGA+SoI (a couple of hours for these problems on a good laptop).

2. With reference to Table 3 the CHH found a total of 33 feasible SoIs. CHH
also found 32 infeasible SoIs. These are also collected passively (and cheaply).
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Table 1. FI2PopGA+SoI: Top feasible SoIs for CDAP SetA 10x5S5. i = solution item
number. objval = objective value. ss = sum of slacks. sN = slack on constraint N.

i objval ss s0 s1 s2 s3 s4 s5 s6 s7 s8 s9
0 6616 78 0 0 9 5 25 6 0 12 7 14
1 6618 78 0 0 16 5 18 6 0 12 7 14
2 6622 78 0 10 6 5 18 6 0 12 7 14
3 6631 78 0 0 16 5 18 6 0 7 12 14
4 6635 78 0 10 6 5 18 6 0 7 12 14
5 6651 78 0 3 6 5 25 6 0 12 7 14
6 6661 78 0 0 9 5 25 6 0 7 12 14
7 6667 78 0 10 18 5 6 6 14 7 0 12
8 6670 78 0 0 9 5 25 0 6 12 7 14
9 6671 78 0 25 3 5 6 6 7 14 0 12

Table 2. FI2PopGA+SoI: Top infeasible SoIs for CDAP SetA 10x5S5. i = solution
item number. objval = objective value. sN = slack on constraint N.

i objval s0 s1 s2 s3 s4 s5 s6 s7 s8 s9
0 6417 36 0 -16 -6 25 6 0 12 7 14
1 6418 36 0 -16 1 18 6 0 12 7 14
2 6440 36 0 -20 5 18 6 16 6 -3 14
3 6460 -6 16 6 5 18 6 -10 32 -3 14
4 6463 36 0 -20 5 18 6 39 -17 -3 14
5 6464 36 0 -20 5 18 6 0 22 -3 14

Some come from the pool of interim solutions found by the CPLEX solver;
others come directly from the simplicial decomposition steps. In consequence,
the number of SoIs (feasible or infeasible) to be collected is really not under
control of the user, and with the process being multi-start, the same solution
can be found in several different passes. The FI2PopGA+SoI on the other
hand found hundreds of distinct SoIs, both feasible and infeasible, and the
number to collect is a parameter in the algorithm.

3. It is interesting to compare the (extended) tables from the two methods. The
overlap in SoIs discovered is small, suggesting that employing both methods
(and in general multiple methods) would be useful for discovering SoIs.

6 Discussion and Conclusion

We have done an extensive number of runs with different CDAP test cases,
including at the high end a 100 source and destination problem, with 30 strip and
30 stack doors. This is larger than can be handled by contemporary branch-and-
bound solvers, yet our two heuristics were successful in finding good solutions
in the sense articulated in the first paragraph of this paper. Space limitations
prevent their presentation here, but what we have reported is representative.

Several points emerge. First, we have demonstrated success in collecting both
feasible and infeasible SoIs with CDAPs, using our FI2PopGA + SoI algorithm
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Table 3. CHH: Top feasible SoIs for CDAP SetA 10x5S5. i = solution item number.
objval = objective value. sN = slack on constraint N.

i objval s0 s1 s2 s3 s4 s5 s6 s7 s8 s9
0 6616 25 5 9 0 0 14 7 12 0 6
1 6618 18 5 16 0 0 14 7 12 0 6
2 6640 0 10 18 5 6 6 0 14 7 12
3 6640 0 10 18 5 6 6 0 14 7 12
4 6640 0 10 18 5 6 6 0 14 7 12
5 6640 6 5 18 10 0 12 7 14 0 6
6 6640 6 5 18 10 0 12 7 14 0 6

Table 4. CHH: Top infeasible SoIs for CDAP SetA 10x5S5. i = solution item number.
objval = objective value. sN = slack on constraint N.

i objval s0 s1 s2 s3 s4 s5 s6 s7 s8 s9
0 6361 18 -15 -16 16 36 14 -6 35 -10 6
1 6387 -12 15 -16 16 36 14 -6 35 -10 6
2 6410 -12 15 -16 16 36 14 17 12 -10 6
3 6418 36 -16 16 -15 18 6 35 -10 -6 14

as well as our CHH algorithm. The SoIs discovered, or at least some of them,
are plausibly useful in decision making for sensitivity analysis and other post-
solution tasks. Moreover, all of this is quite general and not dependent upon
CDAPs per se. (We have also investigated GAP in some depth.) Second, with
evolutionary computation, specifically with our FI2PopGA + SoI algorithm, we
find it productive to lengthen the runs to a point well beyond what is normally
needed to find an optimal solution. Populating the SoIs is itself a challenging
search problem. Third, the CHH is very much faster than FI2PopGA + SoI
algorithm. In the present case, the CHH finds fewer SoIs, but this can be changed
in principle by keeping more solutions from the CPLEX solution pool. This raises
the prospect of systematically varying the constraint RHS values and running the
CHH multiple times, thereby undertaking a parameter sweep on the constraints.
This is indeed possible, and may often be advisable, but it does encounter scaling
problems. Sweeping through 10 RHS values for a problem with 12 constraints
presents 1012 problems to be solved. No doubt, however, much of value can be
obtained from a judicious, partial sweeping with the CHH.

Much, of course, remains to be learned. On CDAP, actual case studies need
to be done and practical evaluation of SoIs undertaken. More generally, we envi-
sion these ideas being taken up systematically so that instead of only an optimal
solution for a given problem, decision makers are presented with a rich body of
SoI data, which they can use for deliberation and which, with automated sup-
port, can be used to suggest opportunities. To this end, new concepts need to be
conceived (e.g., for defining SoIs and making use of them), and DSS techniques
will need to be developed. Beyond that, we believe these results open up the
prospect of a rich new stream of research for addressing the question of how
best to populate the SoIs. Metaheuristics will surely be an important part of
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the answer, as will variations on the CHH and other mathematical program-
ming metaheuristics that can produce multiple solutions. Also, algorithms for
CSPs (constraint satisfaction problems) and related problems such as MaxCSP
and MaxSAT, often produce multiple solutions or partial solutions and so are
worth investigating for their potential to populate the SoIs. Finally, all of the
metaheuristics used for constrained optimization (vast in number) need to be
explored for how they may contribute to populating SoI sets and complement
other methods. The amount of useful work to be done to explore generalized
optimization thoroughly is indeed immense.1
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problema de atribuiçño de portas de cross-dock. Ph.D. thesis, Universidade Federal
fluminense, Escola de Engenharia (2013), mestrado em Engenharia de Produção

6. Guignard, M.: Primal relaxations for integer programming. Invited plenary session,
VII CLAIO, Santiago, Chile (July 1994)

7. Guignard, M., Hahn, P.M., Pessoa, A.A., Cardoso da Silva, D.: Algorithms for
the cross-dock door assignment problem. In: Proceedings of the 4th International
Workshop on Model-Based Metaheuristics. pp. 1–12. Angra dos Reis, Brazil (2012)

8. Hohenbalken, B.V.: Simplicial decomposition in nonlinear programming algo-
rithms. Mathematical Programming 13, 49–68 (1977)

9. Kimbrough, S.O., Lau, H.C.: Business Analytics for Decision Making. CRC Press,
Boca Ratan, FL (2016)

10. Kimbrough, S.O., Lu, M., Wood, D.H., Wu, D.J.: Exploring a two-population
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