
Minimizing total completion time in the
two-machine no-idle no-wait flow shop problem

Federico Della Croce1,2, Andrea Grosso3, and Fabio Salassa1

1 DIGEP, Politecnico di Torino, Torino, Italy,
{federico.dellacroce, fabio.salassa}@polito.it

2 CNR, IEIIT, Torino, Italy
3 D.I., Universitá degli Studi di Torino, Torino, Italy,

grosso@di.unito.it

1 Introduction

In flow shop scheduling, on the one hand, it is often required to compute so-
called no-idle schedules, namely schedules where machines process the jobs con-
tinuously without inserted idle time. This occurs, for instance, when machines
represent very expensive equipments and the production cost is mainly related
to the actual time consumption. On the other hand, it is often required to obtain
so-called no-wait schedules, namely schedules where jobs cannot be idle between
the completion of an operation and the start of the following one. This latter
requirement occurs, for instance, in metal-processing industries, where delays be-
tween operations interfere with the technological process, We consider here the
contemporaneous presence of these two requirements by approaching the two-
machine no-idle/no-wait shop scheduling problem with sum of completion times
as performance criterion. Using the standard three-field notation, we deal with
the F2|no−idle, no−wait|

∑
Cj problem. With respect to the relevant literature

on flow shop, it is well known that problem F2||Cmax is solvable in O(nlogn) time
[7] by first arranging the jobs with p1,j ≤ p2,j in non-decreasing order of p1,j , fol-
lowed by the remaining jobs arranged in non-increasing order of p2,j , where pi,j
denotes the processing time of job Jj on machineMi. On the other hand, problem
F2||

∑
Cj is NP -hard in the strong sense [5]. As mentioned in [1] and [10], prob-

lems F2|no− idle|Cmax and F2|no− wait|Cmax can also be solved in O(nlogn)
time. Instead, problems F3||Cmax, F3|no − idle|Cmax and F3|no − wait|Cmax

were all shown to be NP -hard in the strong sense [5, 2, 11]. Recently, Billaut et al.
[3] showed that problem F2|no− idle, no−wait|

∑
Cj is solvable in linear time,

but problems J2|no − idle, no − wait|
∑
Cj and O2|no − idle, no − wait|

∑
Cj

are NP -hard in the strong sense. In [1], it is reported that both problems
F2|no − idle|

∑
Cj and F2|no − wait|

∑
Cj are NP -hard in the strong sense

by exploiting the fact that the NP -hardness proof of problem F2||
∑
Cj in [5]

was provided by constructing a flow shop instance that happened to be both no-
idle and no-wait. Thus, also problem F2|no− idle, no−wait|

∑
Cj is NP -hard

in the strong sense.
The paper proceeds as follows. In Section 2, the problem is introduced, an ILP

formulation based on positional completion times variables is provided and the

no-idle no-wait requirement is expressed in a form of valid inequalities on the ILP
model. Further properties determining dominant schedules in the exploration of
the solutions space are also provided. Section 3 presents a matheuristic approach
where a very large size neighborhood combining the above mentioned properties
to the ILP formulation of the problem is proposed. Computational results are
provided in Section 4.

2 Problem description and related properties

In the F2|no − idle, no − wait|
∑
Cj problem, a set of n jobs is available at

time zero. Each job j must be processed non-preemptively on two continuously
available machines M1,M2 with known integer processing times p1,j , p2,j > 0,
respectively. Each machine is subject to the so-called no-idle constraint, namely,
it processes continuously one job at a time, and operations of each job cannot
overlap. Each job is also subject to the so-called no-wait constraint, namely, it
cannot be idle between the completion of the first operation and the start of
the second operation. All jobs are processed first on machine M1 and next on
machine M2 and, given the no-wait constraint, the jobs sequences on the two
machines must be identical. Consider Table 1 and Figure 1 which provide an
illustrative example of a feasible no-idle, no-wait schedule for a 7-job problem.

i J1 J2 J3 J4 J5 J6 J7

p1,i 4 3 4 2 3 5 6

p2,i 3 4 2 3 5 6 4
Table 1. Processing times for a 2-machine flow shop

M1

M2

5 10 15 20 25 31

P1,3 P1,4 P1,5 P1,6 P1,7 P1,1 P1,2

P2,3 P2,4 P2,6 P2,6 P2,7 P2,1 P2,2

Fig. 1. A no-idle no-wait schedule for a 2-machine flow shop

We emphasize that the no−idle, no−wait requirement is very strong. Indeed,
for any feasible sequence S = ([1], [2], . . . , [n]) consecutive jobs are forced to share
common processing times in such a way that the following equalities hold.

p2,[j] = p1,[j+1] ∀j ∈ 1, . . . , n− 1. (1)

Besides, the no-idle constraint on the machines imply that also the following
equalities hold.

Ci,[j] + pi,[j+1] = Ci,[j+1] ∀i = 1, 2 ∀j ∈ 1, . . . , n− 1. (2)

As a consequence, we have

n∑
j=1

C2,[j] =

n∑
j=1

C1,[j] +

n∑
j=1

p2,j︸ ︷︷ ︸
constant

(3)

where condition (3) allows to treat the problem objective referring only to a
single-machine function f(S) =

∑n
j=1 C1[j]. Some useful properties, as well as

neighborhood definitions, emerge when a sequence S = ([1], [2], . . . , [n]) is split
in blocks of consecutive jobs S = (B0, B1, . . . , Bt). For a block B = ([k], [k +
1], . . . , [k+m]) in such a sequence we define an entering processing time p1(B) =
p1,[k], a leaving processing time p2(B) = p2,[k+m] and a block processing time

p(B) =
∑k+m

j=k p1[j]. Two blocks B, B′ appearing in a feasible sequence S =
(α,B, π,B′, ω) are then swap-compatible if p1(B) = p1(B′) and p2(B) = p2(B′).
Then also the new sequence S′ = (α,B′, π,B, ω) is feasible. If two swap-compatible
blocks appear consecutively (i.e. π = ∅) then p1(B) = p2(B) = p1(B′) = p2(B′).
The following property holds.

Property 1 Given a sequence S = (α,B,B′, ω) where two swap-compatible
blocks appear consecutively, S is optimal iff

p(B)

|B|
≤ p(B′)

|B′|
.

Proof. Consider the two block sequences S = (α,B,B′, ω) and S′ = (α,B′, B, ω).
Note that f(S′) − f(S) = −|B′|p(B) + |B|p(B′), hence f(S′) − f(S) > 0 iff
p(B)
|B| <

p(B′)
|B′| .

The latter property extends the well-known WSPT rule to block sequencing
in the 2|no-idle,no-wait|

∑
j Cj problem. Consider now a processing time p̄ and

a sequence S; split S into a block sequence S[p̄] = (B0, B1, B2, . . . , Bt, Bt+1)
with B0 possibly empty and p1(B1) = p1(B2) = · · · = p1(Bt) = p̄. Directly from
Property 1, we derive the following corollary.

Corollary 1 (block-WSPT property) In any optimal sequence S, for all p̄:

S = S[p̄] =⇒ p(B1)

|B1|
≤ p(B2)

|B2|
≤ · · · ≤ p(Bt)

|Bt|

2.1 ILP formulation

We stand on the model with positional completion times variables (see [9]), since
it allows (compared to other models) to better exploit the no-wait constraint.

Let Cki be variables representing the completion times of the job in position
i processed by machine k = 1, 2 and xij 0/1 decision variables, where i, j ∈
{1, . . . , n}. A variable xij is equal to 1 if job i is in position j of the sequence,
zero otherwise. We point out that in many flow–shop problems with regular
performance criterion, solutions are characterized by a compact schedule on the
first machine (i.e. there is no idle time on the first machine). In the present
problem this is a requisite, thus the MIP formulation can be slightly adapted
from standard 2-machine flow-shop to include this requisite depicted in (2). The
problem can be then formulated as follows.

min

n∑
j=1

C2j (4)

n∑
i=1

xij = 1 ∀j = 1, . . . , n (5)

n∑
j=1

xij = 1 ∀i = 1, . . . , n (6)

C11 =

n∑
i=1

p1ixi1 (7)

C2j = C1j +

n∑
i=1

p2ixij ∀j = 1, . . . , n (8)

Cij = Ci,j−1 +

n∑
i=1

pijxij ∀i = 1, 2 ∀j = 2, . . . , n (9)

xij ∈ {0, 1} (10)

where constraints (5)–(6) state that a job is chosen for each position in the
sequence and each job is processed exactly once. Constraint (7) sets the com-
pletion time of the first job on M1. Constraints (8) force for each job the start
of the second operation on M2 exactly after its preceding operation on M1 has
completed (no wait requisite). Constraints (9) impose that on each machine the
schedule must be compact (no idle time as in (2)). Finally, (10) sets variables
definition. As pointed out in (1), the processing times on the two machines in
each position (2, . . . , n − 1) must match. In other words, whenever a job with
processing time p on machine M2 is processed in position j− 1, then the follow-
ing job in position j is required to have processing time p on machine M1. Thus,
the following set of constraints can be added to tighten the above model.

∑
i : p1i=p

xij =
∑

i : p2i=p

xi(j−1) ∀j = 2, . . . , n− 1 ∀p (11)

Notice that this set of constraints can be easily introduced in the MIP model
due the choice of positional variables, since they offer a straightforward imple-
mentation of (1). Preliminary testing indicated that the addition of the set of

constraints (11) dramatically increases the performances of any solver applied
to the ILP formulation of our problem. However, only instances with up to 70
jobs are solved to optimality within reasonable CPU time. Correspondingly, the
use of a matheuristic procedure for handling medium-large size instances of the
problem appears very appropriate.

3 Heuristic Approach

We propose a three-step approach that first generates a starting feasible solution,
then applies a neighborhood search approach exploiting the problem properties
and finally executes a matheuristic step to further improve the solution.

3.1 Starting solution generation

Searching for an eulerian tour in a directed graph is a useful tool for generat-
ing feasible sequences for F2|no-idle, no-wait|

∑
j Cj . We represent the problem

instance as a directed multigraph G(V,A) as follows.

V = {pij : i = 1, 2, j ∈ 1, 2, . . . , n}
A = {(p1j , p2j) : j = 1, 2, . . . , n}.

Each processing time in the problem is associated to a node in G, while each
job j with processing times p1j , p2j is associated with an arc directed from node
p1j to node p2j — note that multiple arcs can be present. A feasible solution is
represented by an eulerian tour of G; actually each eulerian tour represents |V |
solutions, since any job (arc) can be chosen as starting point for the sequence.
Figure 2 gives an idea of the structure of G, referring to the jobs in Table 1.

2 3

4

56

J1

J2

J3

J4

J5

J6

J7

Fig. 2. Jobs of Table 1 represented as directed graph.

Sequences like (J5, J6, J7, J8, J9, J1, J2, J3, J4), (J6, J7, J8, J9, J1, J2, J3, J4, J5),
(J7, J8, J9, J1, J2, J3, J4, J5, J6) can be generated from the same eulerian tour.
To reach an initial feasible solution we run on G a randomized version of Hier-
holzer’s algorithm:

– Choose randomly a starting vertex v ∈ V ;
– Follow a trail of arcs from v until returning to v. The obtained tour is a

closed tour, but may not cover all the nodes and arcs of the initial graph.
– As long as there exists a vertex u that belongs to the current tour but has

adjacent edges not in the tour, start another trail from u, following unused
arcs until returning to u and join the new tour to the previous one.

The trails are built by randomly selecting the next arc among those available.
The feasible sequence starts with the job corresponding to the first selected arc.

3.2 Neighborhood exploration

Here we develop a neighborhood search procedure for F2|no-idle,no-wait|
∑
Cj .

Each time a current sequence S is available, we enforce the block-WSPT order-
ing property. The current sequence is decomposed into the consecutive swap-
compatible blocks S[p] = (B0, B1, . . . , Bt) with entering time p. The blocks-
WSPT sequencing is enforced by sorting such blocks in nondecreasing order of
p(B)/|B|. Also, a post-optimization phase is performed, processing the “strad-
dling” jobs in B0 ∪ Bt. The jobs in B0 ∪ Bt are rotated, until they are opti-
mally partitioned between the head and the tail of the sequence. The WSPT
enforcement is repeated for every processing time p, and until no further im-
provement is found. Each WSPT enforcement requires O(n log n) time, given
that the blocks can be identified in O(n) time. The neighborhood structure con-
sidered in our local search algorithm is based on swap-compatible blocks. Given
a current sequence S, we consider all possible pairs of processing times p, p̄
and identify nonadjacent swap-compatible blocks in S = (α,B, π,B′, ω) with
p1(B) = p1(B′) = p, p2(B) = p2(B′) = p̄ and compute S′ = (α,B′, π,B, ω) for
all pairs of consecutive swap-compatible blocks B,B′ — i.e. no other compatible
block is contained in π. We chose to operate on consecutive blocks in order to
save time. The sequence is decomposed in blocks in linear time. A linear number
of consecutive blocks has to be considered for the swap operations, and the ob-
jective variation for each swap operation can be evaluated in constant time. Since
we consider every pair of times p, p̄ this neighborhood is searched in O(n3) time.
The best neighbor S′ (if f(S′) < f(S)) is kept as current solution and the block-
WSPT ordering is enforced again. The search is repeated until a local minimum
is found, i.e. when no improvement is found while trying all possible swaps of
swap-compatible blocks. Notice that, for any randomly detected initial solution
provided by the randomized version of Hierholzer’s algorithm, the application
of phase 2 generates a different local minimum. Hence, it is worthy to consider
a multistart approach that iteratively determines a different initial solution and
then generates by means of phase 2 the corresponding local minimum.

3.3 Matheuristic step

In addition, a matheuristic step is applied taking advantage of the positional
completion times variables ILP formulation. This step is applied along the lines

presented in [4] for problem F2|no− idle, no− wait|
∑
Cj . Consider a working

sequence S̄ corresponding to a valid configuration x̄ = (x̄ij : i, j = 1, . . . , n) of
the xij variables. The matheuristic neighborhood N (S̄, r, h) can be defined by
choosing a position r in the sequence and a window size parameter h. Let denote
by S̄(r;h) = {[r], [r+ 1], . . . , [r+ h− 1]} the index set of the jobs located in the
consecutive positions r, . . . , r+h− 1 of sequence S̄. This corresponds in the ILP
formulation to add the following constraint:

xij = x̄ij i /∈ S̄(r;h), j /∈ {r, . . . , r + h− 1}. (S1)

The choice of the best solution in the neighborhoodN (S̄, r, h) is accomplished
by keeping the sequence unchanged outside the jobs window and optimizing the
sequence within the window. The resulting minimization program can then be
solved by means of a MIP solver. The additional constraints (S1) state that in
the new solution all jobs that do not belong to the window are fixed in the
position they have in the current solution, while the window gets reoptimized.
If no improved solution is found a new job-window is selected to be optimized
until all possible O(n) windows have been selected. The search is stopped once
local optimality (no window reoptimization offers any improved solution).

4 Computational Results

4.1 Instance generation

The instances were generated in the following way:

– processing times on machine one were randomly extracted in [1..maxptime],
– maxptime = αNjobs where α ∈ {0.1, 0.2, 0.3},
– processing times on machine M2 were obtained via a random permutation

of the processing times of machine M1.

For each jobs cardinality Njobs, 30 instances were tested, namely 10 for each
value of parameter α. For each instance the time limit was set to 600 seconds.
The tests were executed on a i5 @ 2.30 GHz equipped with 8GB RAM. Table
2 provides the results reached by the proposed approach applying either phases
1,2 only (starting solution generation plus neighborhood search) or the complete
heuristic with the additional matheuristic step. 5 independent runs were per-
formed for each instance. In the matheuristic step the ILP solver was CPLEX
12.7. After a preliminary parameters calibration, the window size parameter h
of the matheuristic was set to 35 jobs, while the number of repetitions of the
multistart approach combining phases 1 and 2 was set to 1000. Every row pro-
vides the average over ten instances with same value of Njobs and α. Columns
1,2 report the instance size and the value of maxptime respectively. Columns 3,4
provide the minimal (over 5 independent runs) and average percentage error,
respectively, of the neighborhood search given by phases 1,2 with respect the
lower bound provided by the continuous relaxation of the enhanced ILP model
(4–11). Column 5 depicts the average CPU time of the neighborhood search.

Columns 6,7,8 provide the same entries of columns 3,4,5 when the matheuristic
step is added to phases 1, 2.

Njobs maxptime NSBEST NSAV G CPUNS MHBEST NHAV G CPUMH

100 10 0.124 0.157 2.787 0.100 0.110 22.446
100 20 0.532 0.709 3.420 0.440 0.499 30.019
100 30 1.742 1.885 3.910 1.635 1.721 25.520
200 20 0.173 0.293 18.323 0.034 0.105 88.921
200 40 0.520 0.883 22.484 0.242 0.484 91.556
200 60 0.960 1.432 25.227 0.696 1.025 63.591
300 30 0,281 0.411 55.952 0.105 0.210 189.700
300 60 0.680 0.987 73.057 0.494 0.710 153.380
300 90 0.900 1.325 82.417 0.794 1.156 114.580

Table 2. Multistart NS vs Matheuristic

The results indicate that phases 1,2 already get very limited percentage errors
from the continuous bound and that the contribution of the matheuristic step
significantly improves the results at the expense of a reasonable CPU time effort
with the largest size instances requiring approximately 3 minutes.

References

1. I. Adiri and D. Pohoryles. Flowshop / no-idle or no-wait scheduling to minimize
the sum of completion times. Naval Research Logistics, 29, 495–504, 1982.

2. P. Baptiste and K.H. Lee. A branch and bound algorithm for the F |no− idle|Cmax.
Proceedings of the International Conference on Industrial Engineering and Produc-
tion Management, 1, 429–438, 1997.

3. J.C. Billaut, F. Della Croce, F. Salassa and V. T’kindt. When shop scheduling
meets dominoes, eulerian and hamiltonian paths. MAPSP17 Proceedings, Seeon-
Seebruck, Germany, 20–22, 2017 (see also https://arxiv.org/abs/1707.02849).

4. F. Della Croce, A. Grosso and F. Salassa. A matheuristic approach for the two-
machine total completion time flow shop problem. Annals of Operations Research,
213, 67-78, 2014.

5. M.R. Garey, D.S. Johnson and R. Sethi. The Complexity of Flowshop and Jobshop
Scheduling. Mathematics of Operations Research, 1, 117–129, 1976.

6. P.C. Gilmore, R.E. Gomory. Sequencing a one state variable machine: A solvable
case of the traveling salesman problem. Operations Research 12, 655–679, 1964.

7. S.M. Johnson. Optimal two- and three-stage production schedules with setup times
included. Naval Research Logistics Quarterly, 1, 61–68, 1954.

8. P.J. Kalczynski and J. Kamburowski. On no-wait and no-idle flow shops with
makespan criterion. European Journal of Operational Research, 178, 677-685, 2007.

9. Lasserre J.B., Queyranne M. Generic scheduling polyhedral and a new mixed integer
formulation for single machine scheduling. in Proceedings of the IPCO Conference,
136–149, 1992.

10. S.S. Reddi and C.V. Ramamoorthy. On the flowshop sequencing problem with
no-wait in process. Operational Research Quarterly, 23, 323–331, 1972.

11. H. Röck. The three machine no-wait flowshop problem is NP-complete. Journal
of the Association for Computing Machinery, 31, 336–345, 1984.

