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Abstract. In this work we address a hierarchical multi-objective combined Mas-
ter Surgical Scheduling and Surgical Cases Assignment problem with bed level-
ling and patient priority maximization. To solve the problem we propose a Multi-
Neighborhood Local Search based Matheuristic in which several large neigh-
borhoods are sequentially addressed by means of an Integer Programming (IP)
model capable to exhaustively explore large neighborhoods in small computa-
tional times.
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1 Introduction

Operating Rooms (ORs) scheduling and planning can be defined by three hier-
archical decisions levels: strategic, tactical and operational that consider respec-
tively the long, medium and short term objectives [18]. The strategic level consid-
ers resource allocation problem, determining the number of surgeries, which staff
to use for surgeries and defining the amount of the resources available. At tactical
level the master surgical schedule, that is the assignment of OR blocks to sur-
gical specialties, is defined together with the number of surgeons, the definition
of ward and Intensive Care Unit (ICU) use, and the need of equipment. Finally,
at the operational decision level are defined two problems, that is (i) selecting
elective patients usually from a long waiting list and assigning them to a specific
OR time session (i.e., an operating room open on a specific day) over a planning
horizon [8], and (ii) determining the precise sequence of surgical procedures and
the allocation of resources for each OR time session [16]. Such problems are fur-
ther challenged by the inherent stochasticity of their main parameters, such as the
surgery duration, the length of stay and the arrival of non-elective patients [9, 10].
In the perspective of considering further resources needed by the patients, bed
availability is a topic that recently received a particular attention. Ward bed avail-
ability inside a hospital with different surgical specialties is considered in [3, 11]
while other studies [16] consider only the use of ICU or Post-Anaesthesia Care
Unit (PACU) [19], or both [7].
In order to lead and to evaluate the OR planning decisions, several performance
criteria have been reported [4]. Usually, patient priority maximisation and OR



utilisation maximisation are the most used, but also minimise delays and cancel-
lations, maximise patient satisfaction and minimise fixed patient costs or societal
costs were considered as objective function for OR planning. On the contrary,
the workload balance criteria leads to a smooth – without peaks – stay bed oc-
cupancies determining a smooth workload in the ward and, by consequence, an
improved quality of care provided to the patients.
Taking into account a patient–centred perspective, a preliminary comparison be-
tween two criteria – patient priority maximisation and workload balance – has
been reported in [1]. The two criteria provided different results. The patient pri-
ority maximisation is a fairness criterion among patients that allowed us to have
an OR utilisation close to 100% in all cases. Conversely, the workload balance
is a criterion to have a smooth workload along the week, which has been able to
schedule a high number of patients in most cases while ensuring a high level of
OR utilisation.
In this paper we address the hierarchical multi-objective optimisation combined
Master Surgical Scheduling and Surgical Cases Assignment problem with bed
levelling and patient priority maximization introduced in [1]. The aim of this
work is to develop a fast and efficient tool to solve the above cited problem. We
propose a Multi-Neighborhood Local Search based Matheuristic in which several
large neighborhoods are sequentially addressed by means of an Integer Program-
ming (IP) model capable to exhaustively explore large neighborhoods in small
computational times. The problem description and its mathematical formulation
are provided in Section 2. The matheuristic approach is explained in Section 3,
while computational results are discussed in Section 4. Finally, conclusions and
future developments are reported in Section 5.

2 Problem Statement and Mathematical Model

The problem addressed in this work can be formalised as follows. The goal is to
assign simultaneously the OR blocks to a surgical specialty and to schedule pa-
tient surgeries in order to maximise a hierarchical objective function considering
bed levelling and patients priority.
The general goal of this problem is to maximize the quality of the service. The
quality depends on two main factors: waiting times minimization and level of
nursing and medical care during the hospitalization. At first sight, these two ob-
jectives could seem in contrast, because, the greater the level of occupancy in the
department, the lower the level of care the personnel can offer to a single patient.
On the other hand, it is necessary to ensure a high level of occupancy to minimize
waiting times. But, given an average occupancy rate, a bed levelling over the days
of the week guarantee a higher quality of care. Actually, it is more rational to have
a smooth distribution of patients in department instead of having a day in which
the department is completely full and the day after in which it is almost empty.
The solution to achieve the most smoothed global occupancy, i.e. the best bed
levelling, is to maximize the bed occupancy in the day and in the department for
which it is minimum.
Then, the problem addressed in this work can be formalised as follows. The goal
is to assign simultaneously the OR blocks to a surgical specialty and to schedule
patient surgeries in order to maximise a hierarchical objective function consider-
ing bed levelling and patients priority.



More in details, the primary objective consists in maximising the number of beds
occupied in a surgical specialty department, in the day in which the occupation
is minimum, which represents the bottleneck of the problem. The secondary ob-
jective consists in maximising the global patients satisfaction. To each patient is
assigned a score, which is computed as its priority level divided by the waiting
time between the diagnosis and the surgery. The global patient satisfaction is de-
fined as the sum of the scores related to the patients which are selected for surgery
within the planning horizon.
For each patient are known the surgical specialty to which he/she is assigned,
the priority level, the expected length of stay (LOS), the number of days elapsed
from the diagnosis, the expected surgery duration. For each specialty is known the
number of beds available on each day. Furthermore, the length of each OR block
is supposed to be known. The objective is twofold. First, we try to maximise the
minimum occupation of beds in a day in a department, secondly to maximise
patients satisfaction, as described in the previous paragraph. A patient is assigned
to an OR block only if that block has been assigned to the surgical specialty which
the patient belongs. The total expected duration of surgeries scheduled in a OR
block can not exceed its length. Each scheduled patient occupies a bed in the day
of his/her surgery and for a number of following days equal to his/her LOS.
Before reporting the mathematical model, we introduce the following notation.
Let I, J and K be respectively the sets of patients, surgical specialties and oper-
ating rooms, each indexed by i, j and k. Let T = {1, . . . ,Nt} be the set of days
in the planning horizon, indexed by t.Let I j be the subset of patients that belong
to specialty j, j ∈ J. For each patient i ∈ I, we are given the expected duration
of the surgery pi, the priority coefficient πi, and the expected Length of Stay µi,
expressed in days. Let Φit be the number of elapsed day between diagnosis of
patient i and day t.Note that each OR block in the planning horizon is uniquely
defined by the pair of indices (k, t). We denote by skt the time capacity of the OR
session (k, t). Let Λ jt be the number of beds available for specialty j on day t.
Finally, let P and M set to ∑i πi and 1

P+1 , respectively.
Let us introduce the following decision variables: a binary variable Xikt equals to
1 if patient i is assigned to block k on day t, and 0 otherwise; a binary variable Z jkt
equals to 1 if block k on day t has been assigned to specialty j, and 0 otherwise; a
binary variable Yit equals to 1 if patient i occupies a bed on day t, and 0 otherwise;
a binary variable Wit equals to 1 if patient i surgery is scheduled on day t. Let be
also O1 and O2 the primary and the secondary objective.

max z =O1 +MO2 (1a)

s.t. ∑
k∈K

∑
t∈T

Xikt ≤ 1 , i ∈ I (1b)

∑
i∈I j

Xikt ≤ |I j|Z jkt , j ∈ J,k ∈ K, t ∈ T

(1c)

∑
j∈J

Z jkt ≤ 1 , k ∈ K, t ∈ T (1d)

∑
i∈I

piXikt ≤ skt , k ∈ K, t ∈ T (1e)

Wit = ∑
k∈K

Xikt , i ∈ I, t ∈ T (1f)



min(t+µi;Nt )

∑
τ=t

Yiτ ≥ min(µi +1;Nt − t +1)Wit , t ∈ T (1g)

t

∑
τ=max(t−µi,1)

Wiτ ≥ Yiτ , t ∈ T (1h)

∑
i∈I j

Yit ≤Λ jt , t ∈ T, j ∈ J (1i)

O1 ≤ ∑
i∈I j

Yit , t ∈ T, j ∈ J (1j)

O2 = ∑
i∈I

∑
t∈T

∑
k∈K

πi

Φit
Xikt . (1k)

The hierarchical objective function is reported in (1a). The role of the multiplier
M is to ensure that if a solution S1 has a higher value of O1 with respect to S2 it
would be preferred whichever the correspondent values of O2. In other words, the
secondary objective intervenes in the solutions comparison only when the value
of O1 is exactly the same. Constraint (1b) states that only a subset of patients can
be selected from the long waiting list. A patient can be assigned to an OR block
only if it is assigned to the surgery specialty to which he/she belongs, as stated
in constraint (1c). Constraint (1d) implies that each block must be assigned to
at most one specialty. Constraint (1e) imposes that the sum of the surgery times
of the patients scheduled in each OR time block (k, t) may not exceed the time
block capacity skt . Constraint (1f) allows to detect whether patient i surgery is
scheduled on day t. Constraints (1g) and (1h) imply that, if a patient i is sched-
uled on day t, he/she will occupy a bed for the following µi days. Constraints (1i)
limits for each specialty the number of beds occupied each day to the maximum
number of available beds. The primary objective function (1j) concerns the max-
imisation of the number of beds used in the day and the specialty department
with the minimal bed usage, which works as bottleneck approach. The max min
bed occupation objective function tends also to implicitly fill as much as possible
the OR blocks thus avoiding under utilisation of operating rooms. The secondary
objective (1k) concerns the maximisation of the patient served multiplied by the
relative corresponding patient priority and divided by the waiting days from the
diagnosis.

3 A Multi-Neighborhood Local Search Matheuristic

Under the term Matheuristics we group all methods in which heuristic or meta-
heuristic techniques are hybridized with exact methods [15]. Between this broad
family we can identify a specific subset of methods in which a MIP or IP model
is exploited to analyze large neighborhoods.
The introduction of Large Neighborhood Search, implicitly defined by solution
destroy operators [17], requires long computational times to be exhaustively ex-
plored, so, usually, simple repairs operator are used to reconstruct a feasible so-
lution starting from a partially destroyed one. This is equivalent to explore only
a sample of the solutions contained in a neighborhood with a consequent possi-
ble loss of quality. Differently from repair heuristics, the usage of MIP models
allow to explore the whole neighborhood exhaustively, i.e. to find the best way to



reconstruct the destroyed solution. This will yield to a much faster convergence
toward high quality solutions.
Given a Mixed Integer Programming (MIP) or IP formulation of a problem,
a neighborhood generated by a destroy operator can be described adding con-
straints that fix the value of variables, not involved in the destruction, equal to the
value they assumed in the starting solution, while letting the other variables free
to assume every value in their domain. The resulting over- constrained version of
the model is used to identify the optimal value for the remaining variables. This
approach has been proved to be very effective on rich vehicle routing problems,
[13] and [14], nurse rostering [6] and jobs scheduling [5].
To solve the problem defined in Section 2, we propose a multi-neighborhood
local search matheuristic, which consist in sequentially exploring the following
four different neighborhoods.

– N1: patients assignment reoptimization. We keep fixed all the ORs as-
signment to specialties (i.e., the Z variables) and reoptimize only the patient
selection and assignment to surgery sessions.

– N2: 2-days reoptimization. Given 2 days randomly selected, we keep the
other days scheduling fixed and reoptimize the selected days.

– N3: 2-specialties reoptimization. Given 2 specialties randomly selected, we
keep the other days scheduling fixed and reoptimize the selected days.

– N4: bed levelling improvement. This neighborhood is ad-hoc suited to im-
prove the bed levelling and should be applied when the other neighborhoods
are only able to improve the second objective but fail to improve the bed
levelling, remaining trapped into a local minimum for the primary objective.
We identify the bottleneck for the bed levelling, i.e. the specialty j and day t
for which bed occupation is minimum. We artificially increase the bed avail-
ability Λ jt and use as secondary objective function the number of selected
patients, trying, in this way, to push the first objective O1 to be increased.
If the obtained solution is not feasible, we reduce Λ jt to its actual value and
apply again N1.

This procedure is repeated for a fixed number of iterations NMAX . Within the
same iteration, each neighborhood n is evaluated αn times. In order to reduce
computational times, we set, for each neighborhood n, an execution time limit for
the model, τn after which the best obtained solution is reported. Every time we
find an improving solution we keep it as current solution.

4 Computational Results

We report a comparison of the computational results obtained by the matheuristic,
and those directly obtained by solving the model (1a)-(1k) proposed in Section 2.
Two set of instances have been considered. The first, B2, composed of 8 instances,
with 5 ORs, 200 patients uniformly distributed among 4 different specialties and
an availability of 20 beds for each specialty. The second one, B3, composed of
4 instances, with 10 ORs, 400 patients uniformly distributed among 8 different
specialties and an availability of 20 beds. More details about the instances gener-
ation can be found in [2] in which they are introduced for the first time using the
generator reported in [12].
Both the mathematical model and the matheuristic computational have been run
under Xpress 7.9. with a CPU time limit of 3600 seconds. Computational test



have been performed on a PC with a 4-core Intel i7-5500U with 2.4GHz CPU
and 16 Gb of main memory.

Table 1. Comparison of Matheuristic and Model performances on benchmark set B2.

MODEL MATHEURISTIC
INSTANCE OF secs. OF secs.

I200J4B20-1a 13.010 480.28 13.010 108.06
I200J4B20-1b 13.008 444.46 13.008 94.71
I200J4B20-1c 13.008 955.57 13.008 124.93
I200J4B20-1d 13.010 519.12 13.010 131.11
I200J4B20-2a 12.010 53.16 12.010 99.65
I200J4B20-2b 12.011 186.60 12.011 106.90
I200J4B20-2c 12.014 74.10 12.014 119.82
I200J4B20-2d 12.015 24.97 12.015 123.99

average values 12.511 342.28 12.511 113.65

In Table 1, we report, for each instance belonging to set B2, the objective function
(OF) and the computational time in seconds required by the model (MODEL)
and by the matheuristic (MATHEURISTIC). As can be noted from the table, the
matheuristic always reach the optimal solution with an average percentage saving
of the 66.8% on the computational time required.
The same comparison, related to instances belonging to set B3, is reported in
Table 2. On this set, the model is not able to achieve values close to the optimality
in any instance within the time limit of 3600 seconds. Therefore, the reported
solutions may be suboptimal. The matheuristic sensibly improve the results of
the model on all instances within reasonable computational times (524 seconds
on average).

Table 2. Comparison of Matheuristic and Model performances on benchmark set B3.

MODEL MATHEURISTIC
INSTANCE OF secs. OF secs.

I400J4B20-a 11.010 3600 12.004 567.13
I400J4B20-b 10.010 3600 11.010 522.46
I400J4B20-c 10.011 3600 12.012 529.28
I400J4B20-d 10.013 3600 12.013 477.17

average values 10.261 3600 11.760 524.01

In order to analyze the impact on the algorithm performance of the usage of
neighborhood N4, specifically developed to address the bed levelling objective,
we have compared results obtained by the matheuristics (MH) with those ob-
tained considering only neighborhoods N1, N2 and N3 (MH without N4).
Results reported in Table 3 and Table 4 show the crucial role played by the neigh-
borhood N4 within the search process. In fact, the absence of N4 in the multi-
neighborhood local search process negatively affect the method performance.
This negative impact, sensibly relevant on B2 set, become even stronger on the
large instances set B3.



Table 3. Analysis of the impact of N4 on the matheuristic performance on benchmark set B2.

MH MH without N4
INSTANCE OF secs. OF secs.

I200J4B20-1a 13.010 108.06 11.010 42.12
I200J4B20-1b 13.008 94.71 12.009 40.20
I200J4B20-1c 13.008 124.93 11.009 44.54
I200J4B20-1d 13.010 131.11 11.011 41.08
I200J4B20-2a 12.010 99.65 10.011 35.04
I200J4B20-2b 12.011 106.9 10.011 37.85
I200J4B20-2c 12.014 119.82 11.013 37.94
I200J4B20-2d 12.015 123.99 11.016 38.42

average values 12.511 113.65 10.886 39.64

Table 4. Analysis of the impact of N4 on the matheuristic performance on benchmark set B3.

MH MH without N4
INSTANCE OF secs. OF secs.

I400J4B20-a 12.004 567.13 7.310 182.48
I400J4B20-b 11.010 522.46 6.010 189.70
I400J4B20-c 12.012 529.28 6.311 180.92
I400J4B20-d 12.013 477.17 7.013 178.21

average values 11.760 524.01 6.661 182.83

5 Conclusions

In this paper we propose a hierarchical multi-objective optimisation model for
bed levelling and patient priority maximisation for the combined Master Surgical
Scheduling and Surgical Cases Assignment problems. The aim of this work is
to develop a matheuristic for OR planning and scheduling capable to take into
account such different performance criteria.
We propose a multi-neighborhood Local Search based matheuristic in which sev-
eral large neighborhoods are sequentially addressed by means of an IP model
capable to exhaustively explore such large neighborhoods in small computational
times. We also developed an ad-hoc neighborhood suited to improve the bed lev-
elling component of the objective function. The computational analysis proved
the effectiveness of the proposed matheuristic and, in particularly, the extremely
positive impact of the ad-hoc neighborhood.
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