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Abstract. The Convex Hull Heuristic (CHH) is a heuristic for 0-1 inte-
ger programming problems with a nonlinear objective function and linear
constraints. It is a matheuristic in two ways: it is based on the mathe-
matical programming algorithm called simplicial decomposition [1], and
at each iteration, it calls a linear integer programming solver. Its purpose
is to produce quickly near optimal solutions for convex and nonconvex
problems. It is multi-start: following each restart, it repeatedly solves 0-1
programming problems with the original constraints and with a linear
objective that depends on the previous iterations. We have tested it on
a number of hard quadratic 0-1 optimization problems and present nu-
merical results for quadratic assignment problems (QAP), generalized
quadratic assignment problems (GQAP), cross-dock door assignment
problems (CDAP), quadratic knapsack problems (QKP) and quadratic
knapsack problems with a cardinality constraint (E-kQKP). We compare
solution quality and solution times with results from the literature, when
available.
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1 Introduction

The Convex Hull Heuristic (CHH) method is a fast matheuristic that can be
applied to nonlinear 0-1 optimization problems with linear constraints. It can
be used indifferently for convex or nonconvex objective functions (in the case
of minimization), as long as problems with the same constraint set but with a
linear objective function are easy to solve. It is in general a multi-start heuristic,
but for particularly well-behaved problem types, such as quadratic 0-1 knapsack
problems, it can be single start. It always terminates after a finite number of
iterations.

The CHH algorithm is loosely based on simplicial decomposition (SD) [1],
with the feasible region equal to the convex hull of all 0-1 feasible solutions.
This convex hull, constant since the constraints always remain the same, is a
polyhedron that is constructed progressively as more and more of its 0-1 ex-
treme points are generated. Each iteration of CHH requires one continuous NLP
with one linear constraint and a number of variables (the weights in the convex
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hull) that increases through the iterations, and one 0-1 MIP with all original
constraints and a linear objective function that changes with the iterations. In
addition, to speed up the generation of 0-1 (extreme) points, one can make use
of the solution pool of CPLEX and choose the incumbent with best MINLP
objective value.

Our initial use of simplicial decomposition was in computing bounds for 0-1
NLIP’s with linear constraints. Those bounds were computed over the intersec-
tion of the convex hull of the integer points satisfying a subset of constraints,
called the ”kept constraints” thereafter, with the polyhedron of the continu-
ous solutions to the other constraints. Introduced in [3], this primal relaxation,
equivalent to Lagrangean relaxation for linear problems, yields different bounds
for nonlinear problems. This relaxation works in the primal space and considers
separately the kept constraints and the other constraints, like in Lagrangean
relaxation for integer linear problems. The real step forward was discovered in-
dependently by V. Albornoz [4] and A. Ahlatcioglu as reported in [5]. It allows
the construction of a Convex Hull Relaxation where all constraints are kept.
This relaxation was shown to be efficient for convex 0-1 problems in [6], but
most hard quadratic 0-1 problems in the literature, such as QAP’s, usually have
nonconvex objective functions, limiting the usefulness of the approach.

There is however one important feature of simplicial decomposition when
the feasible region is the convex hull of all 0-1 feasible points: even for problems
with a nonconvex objective function, it will generate one new 0-1 feasible point
at each iteration, more if one uses CPLEX to solve the subproblems. Even in the
nonconvex case, it is possible to use the convex hull approach, not to get valid
bounds, but in a heuristic fashion, as a generator of 0-1 feasible solutions. By
carefully designing the initialization phase, one can generate good, most of the
time excellent feasible solutions, and not infrequently optimal ones, for instances
where the optimum is known.

In Section 2, we describe the algorithm. In Section 4, we present a sample of
results from our extensive computational testing for a variety of problem types.
Finally, in Section 5, we discuss possible extensions and conclusions.

2 The Convex Hull Heuristic Method

In [5], a relaxation method called convex hull relaxation (CHR) was introduced
for computing bounds tighter than the continuous lower bound, for convex mixed
integer nonlinear programming (MINLP) with linear constraints. By applying
CHR to such problems, good integer feasible solutions are generated, as well
as a lower bound on the optimal value. Suppose the nonlinear integer program
(NLIP) is

Minimize  f(x) (1)

subject to
Az <b (2)

reB (3)
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with B the set of all 0-1 n-vectors, A and b the constraint matrix and the
right hand side vector, respectively, of a set of linear constraints in x. Let H
represent the convex hull of the 0-1 feasible solutions of (NLIP). This set will
play an important role in what follows. Define the convex hull relaxation (CHR)
of NLIP to be the problem of minimizing f(x) over the convex hull H of the
0-1 feasible solutions of (NLIP). We will apply SD to problem (CHR). Following
[1], we define the Convex Hull Subproblem (CHS) at the k-th iteration of SD
as that of minimizing over H the original objective function f(x) linearized at
a feasible point x(k) of (CHR). Note that (CHS) is a linear program, then it
is equivalent to problem (IPS), the ”integer programming subproblem”, which
is (CHS) restricted to its 0-1 feasible solutions. Indeed, let y(k) be the optimal
solution of (CHS), it depends on z(k) because the linearized function

H(x) = f(x(k)) + v f(2(k))(x — z(k)) (4)

depends on the linearization point (k). This objective function being linear, this
is equivalent to solving (IPS), which is a well-defined (0-1) linear program. To
summarize, at each iteration, one solves a (0-1) linear program with a different
linearized function H(x), while the constraint set remains the same. The solution
to (IPS), y(k), is an extreme point of the convex hull, unless x(k — 1) is optimal
for the convex hull relaxation (CHR). In the former case, the new extreme point
is used to expand the search area at the next iteration. Each iteration produces
a new vertex y(k) of the integer convex hull and then solves the NLP over the
convex hull of (0), y(1),...,y(k). Each time the algorithm adds a new point y(k),
it goes from a line segment to a triangle to a quadrangle etc. Then the convex
hull of z(0), y(1),..., y(k), grows, and approximates better the integer convex
hull. The area searched gets increasingly larger, and if the objective is convex,
SD will at some point have found enough points for the convex hull of z(0),
y(1),..., y(k), to contain the global optimum. In the worst case, it will need to
generate all extreme points of the integer convex hull. If f(z) is convex, the
algorithm will converge after, say, p iterations to a point z(p) in the convex hull
of the set of 0-1 points x feasible for (NLIP). This happens when f(z(p-1)) =
f(z(p)), i.e., the latest point x(p) has not improved the NLIP optimum, or the
gradient is 0 at z(p). f(x(p)) is a valid lower bound on the integer optimum,
because f(xz(p)) is equal to the minimum of f(x) over H. A by-product of CHR,
is that it always produces a number of feasible integer solutions, y(1), ..., y(p),
we can compute f(y(1)), f(y(2)), ..., f(y(p)), and keep the best, called y*, as the
best integer feasible solution found. Whether the problem is convex or not, CHR
works as a primal heuristic. In the convex case (min convex or max concave),
in addition to producing a, usually very good, 0-1 feasible solution, CHR also
produces a valid bound on the optimum, f(z(p)).

3 Displaying CHR on a figure

The figure is meant to give a feeling for what the iterations look like. These
iterations lead to at least a local minimum solution. The algorithm goes as
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follows; x(0) is the initial linearization point. Solve the linear integer program
(IPS) and get y(1). Solve the original NLP over the convex hull of 2(0) and y(1),
get x(1). Solve the new linear integer program (IPS) and get y(2). Solve the
original NLIP over the convex hull of z(0), y(1) and y(2), and get x(2), which
is at least a local optimal solution. In the given example, the CHR heuristic has
generated two integer feasible solutions y(1) and y(2).

Fig. 1. Illustration of iterations.

If the NLIP in this example had had a convex function (or a concave func-
tion in a max problem), CHR would have produced both a valid bound on the
optimum, f(z(p)), and a feasible integer solution y*, which is the best among
the feasible solutions found, y(1), ... , y(p). If the problem is not convex, then
a valid bound cannot be guaranteed, but one still has a heuristic for generating
feasible solutions y(1), ... , y(p), and the best solution found y* is kept.

3.1 Implementation of The Convex Hull Heuristic

The implementation of CHR requires a starting strategy, doing restarts if nec-
essary from different initial linearization points, keeping a balance between op-
timality and runtime, and using CPLEX solution pool.

The initial iteration of SD as applied to 0-1 nonlinear problems with linear
constraints requires a first linearization point. After testing extensively different
approaches, it became clear that choosing directly the initial linearization point
was more difficult and less effective than solving LP’s over the linear constraints,
tilting the gradient of the linear objective function to cover a wide area of the
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Table 1. GQAP instances. instance = instance. nbval = number of 0-1 variables. found
= Optimum found?. percnt = optimality percentage error. TM = Time for MIP. TN
= Time for NLP. TT = total time in seconds.

instance nbval found percnt TM TN TT

20-15-35 300 y 0o 5 2 7
30-06-95 180 y 0 11 6 17
30-07-75 210 y 0 17 4 21
30-08-55 240 y 0 3 2 5
30-10-65 300 y 0 17 5 23
30-20-35 600 y 0 16 6 22
30-20-95 600 n 0.28 219 2221
35-15-55 525 y 0 14 8 22
35-15-95 525 y 0 334 13 347
40-10-65 400 y 0 18 12 29
50-10-65 500 y 0 100 5105
50-10-75 500 y 0 29 7 36

feasible region, and for each direction solve a max and a min problem. This
gave a variety of initial linearization points, and we used the same 8 choices
(times 2 for min and max) for all multi-start runs. Another option in our code
concerns running times of the linear integer subproblems. Without imposing
a time limit, within a run, it often happened that one or more of the linear
MIPS took many times as long as the average of the others. If we had been
looking for a valid lower bound, we would have had to let these problems run
to optimality, but in a nonconvex heuristic mode, we decided to impose a limit
for each rum of no more than a few times the average observed for similar
instances of similar sizes. Additionally, we made use of the solution pool of
CPLEX to look at the incumbents of each BB run. We made CPLEX compute
their quadratic objective function values at basically no additional cost, and we
kept the best overall solution. For most instances, the best solution found came
from a solution pool. Finally, contrary to the general feeling concerning SD, we
were very surprised to see that the number of SD iterations never exceeded 100,
and most of the time was in the 20-30 range. So even though we had implemented
RSD (Restricted Simplicial Decomposition), [2], what was used was really the
original von Hohenbalken’s SD. This means that the algorithm always converged
in a relatively small number of iterations. In other words, it was very fast!

4 Computational results

We tested the CHH heuristic on a number of difficult quadratic 0-1 problems with
linear constraints: GQAP (generalized quadratic assignment problem), QAP
(quadratic assignment problem), CDAP (cross-dock door assignment problem),
E-kQKP (quadratic knapsack problem with a cardinality constraint), and QKP
(quadratic knapsack problem). We will present the results separately for each
problem type. An important point is that for some problems, well known heuris-
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tics are specific to the problem structure, while CHH is essentially a general
purpose heuristic, which needs very little effort to convert to another problem
type. All implementations were done in GAMS, on either a Thinkpad laptop
T4318S, or a unix workstation with similar characteristics.

41 GQAP

The generalized quadratic assignment problem is the quadratic equivalent of the
generalized assignment problem. It was introduced by Lee and Ma [7]. We are
using data from [9]. The instances range from 180 to 600 0-1 variables. Times
are in seconds on the Thinkpad. Notice that for these instances, we did not put
a limit on the time spent on the MIP subproblems.

4.2 CDAP

The cross-dock door assignment problem (CDAP) is the problem of assigning
incoming trucks to unloading doors and outgoing trucks to loading doors in a
rectangular cross-dock. After being sorted according to destination, unloaded
goods have to be transported, often manually, in carts, from incoming doors on
one side to loading doors on the other, and the distance from door to door affects
labor costs. The assignment problem has to be solved before the beginning of
a shift, taking into account the trucks that are already there, and it needs to
be solved again quickly whenever trucks arrive leave, unloaded or loaded, as the
situation in the cross-dock may have changed substantially.

The CDAP is a special case of the GQAP but with many infeasible as-
signments: incoming trucks are normally not assigned to outbound doors, nor
outgoing trucks to unloading doors. Assigning infinite costs to these assignments
is one possibility, but may lead to numerical difficulties. We consider a sparse
subset of feasible assignments from the start.

An early presentation [8] mentioned a preliminary implementation of CHH
for the CDAP over small instances. We use here a realistic dataset generated
by D. Cardoso da Silva [10]. We give results for the largest instances tested. An
instance type B labeled 100 by 50 for instance is one of the largest instances,
with 100 trucks incoming and 100 outgoing, and 50 doors on each side. No
instance beyond 15 by 10 has yet been solved optimally. Without known optimal
solutions, and for comparison purposes, We are presenting our results in parallel
with those of Cardoso’s. He designed a local search heuristic for the CDAP,
pingpong-ing between fixing the assignments on one side and solving on the
other side, and reversing the order. This yields two series of tests, that differ
slightly in the way each iteration starts. For smaller problems (with up to 400 0-
1 variables, Cardoso’s and CHH are basically indistinguishable in solution quality
and running time. For the large problems, on the average, CHH solutions were
0.5 percent worse than the better value of Cardoso’s two implementations. CHH
solution times, however, were much shorter, as seen in the following table (these
instances were run on the same machine). This may be important if trucks are
waiting to be assigned.
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Table 2. CDAP instances. instance = instance. nbval = number of 0-1 vars. Card best
= Cardoso best value. Card T = Cardoso time . CHH best = CHH best value. CHH
T = CHH time. prcnt = optimality percentage error

instance nbval Card best Card T CHH best CHH T prent
SetB-25x10S5 500 49144 194 49904 106 +1.55
SetB-25x10520 500 48215 85 48338 120 +026
SetB-50x10S5 1000 191773 4039 192114 178 +0.18
SetB-50x10S15 1000 188006 3363 187753 164 -0.13
SetB-50x10S30 1000 83961 1652 184532 186 +0.31
SetB-50x20S5 2000 238048 7074 240288 504 + 0.94
SetB-50x30520 3000 266199 2467 264971 390 40.45
SetB-75x20x15 3000 514760 9778 513166 602 -0.31
SetB-75x30S10 4500 636697 6898 636740 2088 +0.38
SetB-75x30x15 4500 620356 7481 617984 1455 -0.11
SetB-100x20x20 4000 921746 4938 925019 360 +0.36
SetB-100x30S30 6000 1052682 5038 1057666 900 +40.47

4.3 QAP

The quadratic assignment problem (QAP) is the quadratic equivalent of the
assignment problem. While the linear assignment problem is easy to solve, the
QAP is probably one of the most difficult quadratic 0-1 problems. The state of
the art for the Nugent data set is still 30x30, or 900 0-1 variables.

The instances are taken from QUAPLib. The instance sizes range from 12
to 36. We report on the instances for which we found the optimal solution,
plus the largest instance for each category tested. Times were so small that they
were not recorded, indeed the integer subproblems are actually linear assignment
problems and take no time.

4.4 QKP

For the quadratic 0-1 knapsack problem, we used Pisinger at al.’s dataset [12].
We ran the first instance for each density and size up to 300 0-1 variables. For
this problem type, we quickly realized that it was a waste of time to run SD
multiple times. First, we could choose the origin as the initial feasible point,
as in this case it is feasible. This point provided us with optimal or very close
to optimal solutions every time. The results were so good that we did not try
other starting points. Only for this problem type however was it clearly a good
choice, indeed For all other problem types mentioned above, each of the 8x2
possible restart types was the only one to produce the best solution for at least
a few instances. Actually some other starting points were eliminated along the
way because they did not produce interesting feasible solutions. Time-wise, on
the Thinkpad T431s, the longest time for running CHH was approximately 15
seconds. Notice that it is our only maximization problem.
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Table 3. QAP instances . instance = instance . size = number of rows (and columns)
. avg = average number of SD iterations per pass. found = Optimum found? . prent =
optimality percentage error

instance size avg found prent

bur26c 26 6.4 Y 0
bur26d 26 6.4 Y 0
bur26e 26 6.4 Y 0
bur26f 26 6.4 Y 0
bur26h 26 6.4 N 0.1
kra32 32 43.3 N 29
lipa30b 30 13.5 Y 0
nugls 15 20.7 Y 0
nugl6b 16 26.6 Y 0
nugl?7 17 21.2 Y 0
nug20 20 21.6 Y 0
nug30 30 25.3 N 0.7
ste36c 36 46.3 N 4.1
tail2a 12 17 Y 0
tai2bb 25 36.4 N 05

5 Extensions and conclusions

The convex hull heuristic is based on simplicial decomposition, and generates
feasible solutions provided by linearized versions of the original quadratic ob-
jective function. At each iteration, one solves one nonlinear continuous problem
with an increasing number of variables to generate the new linearization point
(this part is very fast), and a linearized 0-1 problem to generate a new extreme
point of the integer convex hull of the 0-1 feasible solutions (this part takes
more time, except for the QAP, because one has to solve MIP problems). The
algorithm converges (i.e., stops) when SD produces the same linearization point
twice in a row. It is a generic approach, that can easily be adapted to other
quadratic 0-1 problems. So far, the number of iterations has always be less than
one hundred. Possible directions for improvement might be in the selection of
the initial linearization point, possibly adapted to the problem type. In the case
of a convex minimization problem, one would also obtain a valid lower bound if
every 0-1 subproblem is solved to optimality.
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